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Preview
This chapter introduces risk measures, which are used to assess potential losses and un-
certainty. We will begin by defining the concept of risk measures, including coherent risk
measures, and then introduce several popular examples of risk measures.

Key topics in this chapter:
1. Risk measures and coherent risk measures;

2. Value-at-Risk (VaR);

3. Conditional Tail Expectation (CTE)/Expected Shortfall (ES);

4. Tail-Value-at-Risk (TVaR).

1 Risk Measures
A risk measure plays a crucial role in determining capital requirements, pricing, and reserve
setting. They are used to quantify the magnitude of risks. Broadly speaking, a risk measure
is a mapping from a loss variable X to a real number:

Definition 1.1 A risk measure of a loss variable X is a function H which maps X to a
real number: X 7→ H(X) ∈ R.

Under this definition, the expected value E[X], the variance Var[X], and the standard devi-
ations

√
Var[X] are all risk measures.

Risk measures are first used to develop premium principles. Let X be a loss variable, below
lists some examples of premium principles:

• The expected value premium principle:

H(X) = (1 + θ)E[X],

where θ ≥ 0 is called the risk loading ;

1



• The standard deviation premium principle:

H(X) = E[X] + α
√

Var[X], α ≥ 0;

• The variance premium principle:

H(X) = E[X] + αVar[X], α ≥ 0.

In these examples, we often refer to the difference of the premium and the expected loss as
the premium loading :

Premium Loading = H(X)− E[X].

1.1 Coherent Risk Measures

As we have discussed, risk measures can be broadly defined. But why don’t people rely solely
on expected value and variance? In order to quantify risks in a meaningful manner, it is
expected that a risk measure shall satisfy certain desirable properties. To name a few:

• The more “risky” the loss, the higher the value of H(X);

• Ability to measure the tail behaviour of the loss;

• Computational convenience;

• Interpretability;

• Ability to capture diversification benefit.

Indeed, there is not a single risk measure that is universally better than others, as risk is a
rather subjective concept. However, for quantitative risk management, there are 4 widely
agreed axioms that a “desirable” risk measure should fulfill. Such risk measures are called
coherent risk measures :

Definition 1.2 A risk measure H is said to be a coherent risk measure if it satisfies
the following 4 properties:

1. Translation Invariance: for any constant c,

H(X + c) = H(X) + c.

2. Positive Homogeneity: for any positive constant λ > 0,

H(λX) = λH(X).
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3. Monotonicity: for any random variables X, Y with P(X ≤ Y ) = 1,

H(X) ≤ H(Y ).

4. Subadditivity: or any random variables X, Y

H(X + Y ) ≤ H(X) +H(Y ).

Each property in Definition 1.2 can be interpreted as follows:

• Translation Invariance: This means that adding a constant amount to a risk
adds the same amount to the required capital, since a constant has no variation or
randomness.

• Positive Homogeneity: This implies that changing the units of loss (e.g., currency)
does not change the risk measure and the required capital (up to a constant).

• Monotonicity: The bigger the loss, the higher the reserve we need.

• Subadditivity: Combining losses can result in diversification and reducing the total
risk measure. In other words, diversification (i.e. consolidating risks) cannot make
the risk greater, but it might make the risk smaller if one risk can hedge the other
risk.

Remark 1.1. Under Definition 1.2, the expected value is indeed a coherent risk measure
(show it!). However, the expected value is not sufficient to describe the tail behaviour of a
loss, which is one major interest in risk management.

In the upcoming sections, we shall introduce several popular risk measures used in actuarial
science and risk management, despite not all of them are coherent risk measures.

2 Value-at-Risk
The Value-at-Risk (VaR) is a very popular risk measure in the finance and insurance
industry. It represents the amount of capital required to ensure, with a high degree of
certainty, that the company has the ability to absorb the loss and does not become insolvent.
The VaR is widely used to meet regulatory and disclosure requirements, including those under
Basel II.

Definition 2.1 Let α ∈ (0, 1). The Value-at-Risk of the loss variable X is defined as

VaRα(X) := inf{x : FX(x) ≥ α}.

3



As introduced in Chapter 1, the α-VaR is equivalent to the 100α-th percentile of X. Let’s
recall some properties of the VaR:

1. If FX is continuous and strictly increasing, then the inverse F−1
X exists, and VaRα(X) =

F−1
X (α).

2. If X is continuous, P(X ≤ VaRα(X)) = α.

3. In general, P(X ≤ VaRα(X)) ≥ α.

Example 2.1 Let X ∼ Pareto(α, θ). For p ∈ (0, 1), find VaRp(X).
Solution:
For X ∼ Pareto(α, θ),

FX(x) = 1−
(

θ

x+ θ

)α

, x > 0.

By solving

p = FX(x) = 1−
(

θ

x+ θ

)α

,

we obtain

VaRp(X) = F−1
X (p) =

θ
[
1− (1− p)

1
α

]
(1− p)

1
α

.

In the following, we show that VaR is NOT a coherent risk measure. Indeed, VaR only
satisfies the first 3 properties in Definition 1.2, but not the subadditivity.

Proposition 2.1 The Value-at-Risk is translation invariant, positive homogeneous, and
monotonic.

Proof.

1. VaR is translation invariant: for any c ∈ R,

VaRα(X + c) = inf{x : P(X + c ≤ x) ≥ α}
= inf{x : P(X ≤ x− c) ≥ α}
= inf{x− c : P(X ≤ x− c) ≥ α}+ c

= inf{y : P(X ≤ y) ≥ α}+ c

= VaRα(X) + c.

2. VaR is positive homogeneous: for any λ > 0,

VaRα(λX) = inf{x : P(λX ≤ x) ≥ α}
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= inf{x : P(X ≤ λ−1x) ≥ α}
= λ inf{λ−1x : P(X ≤ λ−1x) ≥ α}
= λ inf{y : P(X ≤ y) ≥ α}
= λVaRα(X).

3. VaR is monotonic: for any random variables X, Y such that P(X ≤ Y ), we must have
{Y ≤ x} ⊆ {X ≤ x} for any x ∈ R. Hence, P(X ≤ x) ≥ P(Y ≤ x). This implies that,
for any α ∈ (0, 1), P(Y ≤ x) ≥ α ⇒ P(X ≤ x) ≥ α, and thus

{x : P(Y ≤ x) ≥ α} ⊆ {x : P(X ≥ x) ≤ α}.

Therefore,

VaRα(Y ) = inf{x : P(Y ≤ x) ≥ α} ≥ inf{x : P(X ≤ x) ≥ α} = VaRα(X).

The next example1 shows that VaR is not subadditive:

Example 2.2 Let Bi, i = 1, . . . , 1000, be i.i.d. random variables with Bi ∼
Bernoulli(0.1). Let Xi := 90Bi − 9.

(a) Find VaR0.9(X1).
(b) Let X̄ :=

∑1000
i=1 Xi/1000. Find VaR0.9(X̄).

(c) Using (a) and (b), show that VaR is not subadditive.
Solution:

(a) The pmf of X1 is given by P(X1 = −9) = 0.9, and P(X1 = 81) = 0.1. Hence,
VaR0.9(X1) = −9.

(b) Notice that
∑1000

i=1 Xi = 90
∑1000

i=1 Bi − 90000 = 90B − 9000, where B ∼
Bin(1000, 0.1). One can verify, by using computer algorithm, that VaR0.9(B) = 112.
Therefore, by the translation invariance and positive homogeneity, we have

VaR0.9(X̄) =
90VaR0.9(B)− 9000

1000
=

90(112)− 9000

1000
= 1.08.

(c) Assume the contrary that VaR is subadditive, then we would have

VaR0.9(X̄) =
1

1000
VaR0.9

(
1000∑
i=1

Xi

)
≤ 1

1000

1000∑
i=1

VaR0.9(Xi) = VaR0.9(X1),

which implies 1.08 = VaR0.9(X̄) ≤ VaR0.9(X1) = −9, which is absurd.

1The example is adopted from An Introduction to Computational Risk Management of Equity-Linked
Insurance (Feng, 2018).
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3 Conditional Tail Expectation
Let α ∈ (0, 1). The α−conditional tail expectation (CTE) is the expected loss given
that the loss is greater than the α-VaR:

Definition 3.1 The conditional tail expectation (a.k.a. expected shortfall) of the
loss X at the confidence level α ∈ (0, 1) is defined as

CTEα(X) := E[X|X > VaRα(X)].

The CTE measures the average loss in the worst 100(1−α)% of cases. Compared with VaR,
it is more indicative on the tail behaviour of the loss X, as it captures the severity of losses
beyond the VaR threshold. It is also clear from definition that

CTEα(X) = E[X|X > VaRα(X)] > E[VaRα(X)|X > VaRα(X)] = VaRα(X).

Hence, the CTE is more conservative than the VaR at the same confidence level α. By
relating with the mean excess loss eX(·), the CTE can be computed using

CTEα(X) = VaRα(X) + eX(VaRα(X)) = VaRα(X) +
E [(X − VaRα(X))+]

1− FX(VaRα(X))
. (1)

Example 3.1 Let X ∼ Pareto(α, θ), where α > 1. For p ∈ (0, 1), compute CTEp(X).
Solution:
For X ∼ Pareto(α, θ), we know that E[X] = θ/(α− 1). From Example 2.1, we also have

VaRp(X) =
θ
[
1− (1− p)

1
α

]
(1− p)

1
α

.

Using the formula of eX(d) for the Pareto distribution (see Chapter 2, Example 2.2),

E[X − VaRp(X)|X > VaRp(X)] =
θ + VaRp(X)

α− 1

=
θ(1− p)

1
α + θ

[
1− (1− p)

1
α

]
(α− 1)(1− p)

1
α

=
θ

(α− 1)(1− p)
1
α

.
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Hence,

CTEp(X) = E[X − VaRp(X)|X > VaRp(X)] + VaRp(X)

=
θ

(α− 1)(1− p)
1
α

+
θ
[
1− (1− p)

1
α

]
(1− p)

1
α

=
θ

(1− p)
1
α

[
α

α− 1
− (1− p)

1
α

]
.

The CTE is NOT a coherent risk measures. In particular, it is NOT sub-additive.

Proposition 3.1 The CTE is translation invariant and positive homogeneous.

Proof.

1. CTE is translation invariant: for any c ∈ R,

CTEα(X + c) = E[X + c|X + c > VaRα(X + c)]

= E[X|X + c > VaRα(X) + c] + c

= E[X|X > VaRα(X)] + c

= CTEα(X) + c,

where the second equality follows from the translation invariance of VaRp(X).

2. CTE is positive homogeneous: for any λ > 0,

CTEα(λX) = E[λX|λX > VaRα(λX)]

= λE[X|λX > λVaRα(X)]

= λE[X|X > VaRα(X)]

= λCTEα(X),

where the second equality follows from the positive homogeneity of VaRp(X).

Indeed, one can construct a counterexample to show that CTE is not subadditive, the details
are omitted herein.

Proposition 3.2 The CTE is not subadditive.
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4 Tail-Value-at-Risk
We have seen that VaR does not offer any information on the tail of the underlying risk.
While the CTE addresses this shortcoming, it still lacks the subadditivity. When used as
a basis of capital requirement, CTE does not reward risk diversification. A similar quan-
tity, known as the Tail-Value-at-Risk, addresses both shortcomings of the VaR and the
CTE.

Definition 4.1 The Tail-Value-at-Risk of the loss X at the confidence level α ∈ (0, 1)
is defined as

TVaRα(X) :=
1

1− α

∫ 1

α

VaRp(X)dp.

The TVaR highly resembles the CTE, as it also measures the average tail loss of X beyond
the confidence level α. Indeed, if X is continuous, CTE and TVaR coincides. We first show
the following formula:

Proposition 4.1 For any α ∈ (0, 1), we have

TVaRα(X) = VaRα(X) +
1

1− α
E
[
(X − VaRα(X))+

]
. (2)

Proof. Since VaRp(X) is the reflection of FX(x) along the line y = x (see Figure 1, we can
see that ∫ 1

α

VaRp(X)dp = (1− α)VaRα(X) +

∫ ∞

VaRα(X)

SX(x)dx

= (1− α)VaRα(X) + E
[
(X − VaRα(X))+

]
.

Hence,

TVaRα(X) =
1

1− α

∫ 1

α

VaRp(X)dp

= VaRα(X) +
1

1− α
E
[
(X − VaRα(X))+

]
.

Proposition 4.2 Suppose that X is a continuous random variable. Then, for any α ∈
(0, 1), TVaRα(X) = CTEα(X).
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x

FX(x)

VaRα(X)

α

1

(1− α)VaRα(X)

+
∫∞

VaRα(X)
SX(x)dx

p

VaRp(X)

VaRα(X)

α 1

∫ 1

α
VaRp(X)dp

Figure 1: Integrals of Value-at-Risk

Proof. If X is continuous, we have

SX (VaRα(X)) = P(X > VaRα(X)) = 1− α.

Using this and Equations 1-(2), we have

TVaRα(X) = VaRα(X) +
1

1− α
E
[
(X − VaRα(X))+

]
= VaRα(X) +

1

SX (VaRα(X))
E
[
(X − VaRα(X))+

]
= VaRα(X) + eX (VaRα(X))

= CTEα(X).

Unlike CTE and VaR, TVaR is subadditive. The proof is based on the fact that TVaR is a
distortion risk measure with a concave distortion function, which is out of the scope of the
course. In addition, it is straightforward to show that TVaR is translation invariant, positive
homogeneous, and monotonic. Therefore, TVaR is indeed a coherent risk measure.

Theorem 4.3 The TVaR is translation invariant, positive homogeneous, monotonic,
and subadditive. Therefore, TVaR is a coherent risk measure.
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Example 4.1 Let X ∼ N (µ, σ2). For any α ∈ (0, 1), let zα be such that Φ(zα) =
P(Z ≤ zα) = α, i.e., zα is the α-quantile of the standard normal distribution. Express
the following in terms of zα:

(a) VaRα(X);
(b) TVaRα(X).

Solution:

(a) The cdf of X is given by

FX(x) = P(X ≤ x) = P
(
Z ≤ x− µ

σ

)
= Φ

(
x− µ

σ

)
.

By solving

α = FX(x) = Φ

(
x− µ

σ

)
,

we have
x− µ

σ
= zα ⇒ VaRα(X) = µ+ σzα .

(b) We first find TVaRα(Z), where Z ∼ N (0, 1). Notice that VaRα(Z) = zα, and

E [(Z − VaRα(Z))+] =

∫ ∞

zα

x− zα√
2π

e−
z2

2 dz

=
1√
2π

∫ ∞

zα

ze−
z2

2 dz − zα

∫ ∞

zα

1√
2π

e−
z2

2 dz

=
1√
2π

e−
z2α
2 − zα (1− Φ(zα))

= ϕ(zα) + zα(α− 1),

where ϕ(·) is the pdf of the standard normal distribution. Using (2), we have

TVaRα(Z) = zα +
ϕ(zα) + zα(α− 1)

1− α
=

ϕ(zα)

1− α
.

Since X is continuous, CTEα(X) = TVaRα(X), and thus

TVaRα(X) = E[X|X > VaRα(X)] = E [µ+ σZ|µ+ σZ > µ+ σzα]

= µ+ σE[Z|Z > zα]

= µ+ σTVaRα(Z)

= µ+
σϕ(zα)

1− α
.
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